Abstract

In this chapter, a methodology for the utilization of edge-detector based hybrid artificial neural network (ANN) models for urinary bladder cancer is presented. The diagnosis of the bladder cancer can often be complex and it requires invasive diagnostic methods such as biopsy and histopatological evaluation. ANN utilization can provide faster and less invasive diagnosis. The methodology of ANN utilization for urinary bladder cancer diagnosis is based on images obtained with confocal laser endomicroscope during cystoscopy. Such approach can be challenging from the standpoint of computational resources, due to ANN model complexity. Higher computational resources are often inaccessible, especially in clinical practice. Here lies a motive for simplification of ANN models for urinary bladder cancer diagnosis. For these reasons, edge detector-based hybrid models are introduced due to their simpler architectures. From obtained results, it can be noticed that the highest performances are achieved with Laplacian-based convolutional neural network (CNN) model. On the other hand, such approach requires more complex CNN architectures in comparison to gradient-based hybrid CNN models. If Sobel edge detector is utilized, similar classification performances are achieved with less complex CNN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.