Abstract
AbstractLet L, T, S, and R be closed densely defined linear operators from a Hubert space X into X where L can be factored as L = TS + R. The equation Lu = f is equivalent to the linear system Tv + Ru = f and Su = v. If Lu = f is a two-point boundary value problem, numerical solution of the split system admits cruder approximations than the unsplit equations. This paper develops the theory of such splittings together with the theory of the Methods of Least Squares and of Collocation for the split system. Error estimates in both L2 and L∞ norms are obtained for both methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have