Abstract

We consider the splitting mechanism of a multiply charged vortex into singly charged vortices in a Bose-Einstein condensate confined in a harmonic potential at zero temperature. The Bogoliubov equations support unstable modes with complex eigenfrequencies (CE modes), which cause the splitting instability without the influence of thermal atoms. The investigation of the excitation spectra shows that the negative-energy (NE) mode plays an important role in the appearance of the CE modes. The configuration of vortices in splitting is determined by the angular momentum of the associated NE mode. This structure has also been confirmed by the numerical simulation of the time-dependent Gross-Pitaevskii equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.