Abstract

In this paper, we study the interaction-modulated tunneling dynamics of a Bose-Fermi superfluid mixture, where a Bose-Einstein condensate (BEC) with weak repulsive interaction is confined in a symmetric deep double-well potential and an equally populated two-component Fermi gas in a harmonic potential symmetrically is positioned in the center of the double-well potential. The tunneling between the two wells is modulated by fermions trapped in a harmonic potential. When the temperature is adequately low and the bosonic particle number is adequately large, we can employ the mean-field theory to describe the evolution of the BEC in the double-well potential through the time-dependent Gross-Pitaevskii equation. For the Fermi gas in the harmonic potential trap, we consider the case where the inter-fermion interaction is tuned on the deep Bose-Einstein condensate of the inter-fermion Feshbach resonance, where two fermions of spin-up and spin-down form a two-body bound state. Within the regime, the Fermi gas is well described by a condensate of these fermionic dimers, and hence can be simulated as well by a Gross-Pitaevskii equation of dimers. The inter-species interactions couple the dynamics of the two species, which results in interesting features in the tunneling oscillations. The dynamic equations of the BEC in the double-well potential is described by a two-mode approximation. Coupling it with time-dependent Gross-Pitaevskii equation of the harmonically potential trapped molecular BEC, we numerically investigate the dynamical evolution of the Boson-Fermi hybrid system under different initial conditions. It is found that the interaction among fermions in a harmonic potential leads to strong non-linearity in the oscillations of the bosons in the double-well potential and enriches the tunneling dynamics of the bosons. Especially, it strengthens macroscopic quantum self-trapping. And the macroscopic quantum self-trapping can be expressed in three forms: the phase tends to be negative and monotonically decreases with time, the phase evolves with time, and the phase tends to be positive and increases monotonically with time. This means that it is possible the tunneling dynamics of the BEC in double-well potential is adjustable. Our results can be verified experimentally in a Bose-Fermi superfluid mixture by varying different interaction parameters via Feshbach resonance and confinement-induced resonance.

Highlights

  • 宏观量子隧穿显示了量子多体波函数的聚集隧穿行为,在各种系统中都有 研究. 两个弱耦合 BEC 之间的量子隧穿包括约瑟夫森振荡、非线性朗道-齐纳隧 穿[15]、Rosen-Zener 隧穿[16]等. 特别地,在对称双势阱中的 BEC 随着时间的演化 出现了大多数粒子局域在一个势阱中,表现出高度不对称的宏观量子自囚禁现象 (Macroscopic Quantum Self-trapping 简称 MQST) [17]. 量子隧穿现象中很多参数在 实验上可以被直接调节,如:基态能量差,隧穿系数,粒子数等,因此超冷原子 气体背景下的宏观量子隧穿现象的研究受到了广泛关注. 光晶格中费米超流气体 约瑟夫森振荡现象的研究为我们探究整个 Bardeen-Cooper-Schrieffer(BCS)超流 端到 BEC 端渡越区中的费米超流体提供了难得的机会. 实验方面,在光晶格中观 察、研究了玻色-费米混合体系的输运现象. 但是,对于在不同势阱中具有种间、 种内相互作用的玻色-费米混合体系的动力学研究很少受到关注

  • Rev. A 77 010701 [ 6 ] 陈海霞 2009 博士学位论文(太原:山西大学) [ 7 ] 王汉权 2012 玻色-爱因斯坦凝聚中的量化涡旋及其动力学(北京:科学出

Read more

Summary

Introduction

宏观量子隧穿显示了量子多体波函数的聚集隧穿行为,在各种系统中都有 研究. 两个弱耦合 BEC 之间的量子隧穿包括约瑟夫森振荡、非线性朗道-齐纳隧 穿[15]、Rosen-Zener 隧穿[16]等. 特别地,在对称双势阱中的 BEC 随着时间的演化 出现了大多数粒子局域在一个势阱中,表现出高度不对称的宏观量子自囚禁现象 (Macroscopic Quantum Self-trapping 简称 MQST) [17]. 量子隧穿现象中很多参数在 实验上可以被直接调节,如:基态能量差,隧穿系数,粒子数等,因此超冷原子 气体背景下的宏观量子隧穿现象的研究受到了广泛关注. 光晶格中费米超流气体 约瑟夫森振荡现象的研究为我们探究整个 Bardeen-Cooper-Schrieffer(BCS)超流 端到 BEC 端渡越区中的费米超流体提供了难得的机会. 实验方面,在光晶格中观 察、研究了玻色-费米混合体系的输运现象. 但是,对于在不同势阱中具有种间、 种内相互作用的玻色-费米混合体系的动力学研究很少受到关注. 两个弱耦合 BEC 之间的量子隧穿包括约瑟夫森振荡、非线性朗道-齐纳隧 穿[15]、Rosen-Zener 隧穿[16]等. 特别地,在对称双势阱中的 BEC 随着时间的演化 出现了大多数粒子局域在一个势阱中,表现出高度不对称的宏观量子自囚禁现象 (Macroscopic Quantum Self-trapping 简称 MQST) [17]. 双模近似方法在研究双势阱中 BEC 的动力学特性时被广泛使用[21,22,23].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.