Abstract
Split-step orthogonal spline collocation (OSC) methods are proposed for one-, two-, and three-dimensional nonlinear Schrödinger (NLS) equations with time-dependent potentials. Firstly, the NLS equation is split into two nonlinear equations, and one or more one-dimensional linear equations. Commonly, the nonlinear subproblems could be integrated directly and accurately, but it fails when the time-dependent potential cannot be integrated exactly. In this case, we propose three approximations by using quadrature formulae, but the split order is not reduced. Discrete-time OSC schemes are applied for the linear subproblems. In numerical experiments, many tests are carried out to prove the reliability and efficiency of the split-step OSC (SSOSC) methods. Solitons in one, two, and three dimensions are well simulated, and conservative properties and convergence rates are demonstrated. We also apply the ways of solving the nonlinear subproblems to the split-step finite difference (SSFD) methods and the time-splitting spectral (TSSP) methods, and the approximate ways still work well. Finally, we apply the SSOSC methods to solve some problems of Bose–Einstein condensates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.