Abstract
In the present work, orthogonal spline collocation (OSC) method with convergence order O(τ3−α + hr+ 1) is proposed for the two-dimensional (2D) fourth-order fractional reaction-diffusion equation, where τ, h, r, and α are the time-step size, space size, polynomial degree of space, and the order of the time-fractional derivative (0 < α < 1), respectively. The method is based on applying a high-order finite difference method (FDM) to approximate the time Caputo fractional derivative and employing OSC method to approximate the spatial fourth-order derivative. Using the argument developed recently by Lv and Xu (SIAM J. Sci. Comput. 38, A2699–A2724, 2016) and mathematical induction method, the optimal error estimates of proposed fully discrete OSC method are proved in detail. Then, the theoretical analysis is validated by a number of numerical experiments. To the best of our knowledge, this is the first proof on the error estimates of high-order numerical method with convergence order O(τ3−α + hr+ 1) for the 2D fourth-order fractional equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.