Abstract

To achieve the surface plasmon resonance (SPR) mode splitting in infrared wavelength band, and to improve the figure-of-merit (FOM) of grating based SPR sensor, in this article we present a new composite grating structure, which consists of double metal gratings, and study the gas sensing performance. Split modes of SPR in composite metal grating are observed by using the finite difference time domain method. The original structure symmetry is broken and changed with increasing relative displacement between the double gratings, as a result, the resonant modes move to opposite directions. Calculated electric field distribution of the two separate resonant modes displays two different degrees of coupling effect between the double gratings. When the relative displacement is further increased till the double gratings are connected to form a new symmetrical single grating, the separate resonant modes will merge into another single resonant mode. If the refractive index of analyte (na) is in a range 1.01≤na≤1.05 and the relative displacement of double gratings is zero, the wavelength sensitivity based on composite metal grating gas sensor reaches 1207.5 nm/RIU (per refractive index of unit) and the FOM is obtained to be 1290.7, while the relative displacement of the double gratings is 100 nm, for the double split modes the wavelength sensitivities are 1205.0 nm/RIU and 1210.0 nm/RIU, respectively, and the corresponding FOMs are 1295.4 and 762.3. Therefore, the high FOM of the composite grating based on SPR sensor possesses great potential applications in biochemical sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call