Abstract

Tay-Sachs disease is an inherited disorder in which the alpha chain of the lysosomal enzyme beta-N-acetylhexosaminidase A bears the mutation. Ashkenazi Jews are found to be carriers for a severe type of Tay-Sachs disease, the classic form, 10 times more frequently than the general population. Ashkenazi Jewish patients with classic Tay-Sachs disease have appeared to be clinically and biochemically identical, and the usual assumption has been that they harbor the same alpha-chain mutation. In this study I have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM2968, with classic Tay-Sachs disease and compared its nucleotide sequences with that of the normal alpha-chain gene in the promoter region, exon and splice junction regions, and polyadenylylation signal area. Only one difference was observed between these sequences: at the 5' boundary of intron 12, a guanosine in the conserved splice junction dinucleotide sequence G-T had been altered to a cytidine. The alteration is presumed to be functionally significant and to result in aberrant mRNA splicing. Utilizing the polymerase chain reaction to amplify the region encompassing the mutation, I developed an assay to screen patients and heterozygote carriers for this mutation. Surprisingly, in each of two Ashkenazi patients, only one alpha-chain allele harbored the splice junction mutation. Only one parent of each of these patients was positive for the defect. Another Ashkenazi patient did not bear this mutation at all nor did either of the subject's parents. In addition, 30% of obligate heterozygotes tested carried the splice junction mutation, whereas 20 Ashkenazi Jews designated noncarriers by enzymatic assay were negative for this alteration. The data are consistent with the presence of more than one mutation underlying the classic form of Tay-Sachs disease in the Ashkenazi Jewish population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.