Abstract

DNA G-quadruplexes (G4s) in vivo have been linked to cancer and other diseases such as neurological disorders. Nondestructive fast detection of endogenous DNA G4s can provide specific real-time information, which is of particular interest for clinic accurate diagnosis. However, tools to probe live-cell endogenous DNA G4s in real time are very limited. Herein, we report the design and development of a fluorescent molecule QIN for the real-time detection of endogenous DNA G4s in live cells with the aid of a new spiropyran in situ switching (SIS) strategy. The lipophilic spiropyran-linked QIN differs from the other probes in that it can enter live cells readily within 15 s and can be in situ induced by DNA G4s to adopt its charged open form, causing a large red shift in the fluorescent emission wavelength. Live-cell super-resolution fluorescent imaging suggests that the SIS-based probe has high photostability and can be applied for the accurate detection of DNA G4s in complex biosystems with very high sensitivity and selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call