Abstract

The maximum values of photo-induced birefringence of spirooxazine in poly(methyl methacrylate) (PMMA) films pre-irradiated by ultraviolet light was investigated as a function of He-Ne laser (632.8nm) pumping-beam intensity. This material exhibited a competing process between photo-orientation and photo-isomerization. The photo-orientation is predominant when the power density of He-Ne beam is lower; while the photo-isomerization is dominant at relatively high power density of He-Ne beam. An improved phenomenological model, elucidating a competition between photo-orientation and photo-isomerization, was precisely presented. Dynamic holographic recording under linear polarized writing beams at 632.8 nm was performed on spirooxazine doped PMMA matrices assisted by UV light. It was found that dynamics of the optical storage signal intensity in the polymer films were dependent on the thermal stability and aggregation of spirooxazine molecules in PMMA matrices. A theoretical description the formation and eraser of the transient orientation grating, competing with isomerization gratings, agrees well with experimental results. The interaction between the chromophores and matrices was also discussed. It was indicated that spirooxazine-doped polymer films are candidates for reversible optical storage medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.