Abstract

Close to the ground, it is generally known that atmospheric turbulence exhibits strong anisotropy, which affects the performance of applications such as free-space optical (FSO) communication. In this paper, we establish a theoretical model for calculating the spiral spectrum, also called the orbital angular momentum (OAM) spectrum, of a Laguerre-Gaussian (LG) beam after propagation through anisotropic turbulence along a horizontal link. This model isolates the effects of anisotropy from other parameters of the turbulence. On the basis of this model, the effects of the anisotropy on the probability density of the OAM spectrum and its corresponding modal crosstalk are studied through numerical examples. Our simulation results show that the width of the OAM spectrum will increase or slightly decrease depending on the specific nature of the anisotropy. In addition, it is demonstrated that the inner scale is more likely to cause modal crosstalk than the outer scale. Some strategies to reduce modal crosstalk in anisotropic turbulence are also discussed. Our results may be useful in OAM-based FSO communication at ground level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.