Abstract

The copropagation of two relativistic intense laser beams with orthogonal polarization in a parabolic plasma channel is studied analytically and numerically. A set of coupled equationsfor the evolution of the laser spot sizes and transverse centroids are derived by use of the variational approach. It is shown that the centroids of the two beams can spiral and oscillate around each other along the channel axis, where the characteristic frequency is determined both by the laser and plasma parameters. The results are verified by direct numerical solution of the relativistic nonlinear Schrödinger equationsfor the laser envelopes as well as three-dimensional particle-in-cell simulations. In the case with two ultrashort laser pulses when laser wakefields are excited, it is shown that the two wake bubbles driven by the laser pulses can spiral and oscillate around each other in a way similar to the two pulses. This can be well controlled by adjusting the incidence angle and separation distance between the two laser pulses. Preliminary studies show that externally injected electron beams can follow the trajectories of the oscillating bubbles. Our studies suggest a new way to control the coupling of two intense lasers in plasma for various applications, such as electron acceleration and radiation generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.