Abstract

We propose a spin-variable reduction method for Ising machines to handle linear equality constraints in a combinatorial optimization problem. Ising machines including quantum-annealing machines can effectively solve combinatorial optimization problems. They are designed to find the lowest-energy solution of a quadratic unconstrained binary optimization (QUBO), which is mapped from the combinatorial optimization problem. The proposed method reduces the number of binary variables to formulate the QUBO compared to the conventional penalty method. We demonstrate a sufficient condition to obtain the optimum of the combinatorial optimization problem in the spin-variable reduction method and its general applicability. We apply it to typical combinatorial optimization problems, such as the graph κ-partitioning problem and the quadratic assignment problem. Experiments using simulated-annealing and quantum-annealing based Ising machines demonstrate that the spin-variable reduction method outperforms the penalty method. The proposed method extends the application of Ising machines to larger-size combinatorial optimization problems with linear equality constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.