Abstract
Spin and electric Hall currents are calculated numerically in a two-dimensional mesoscopic system with Rashba and Dresselhaus spin-orbit coupling by means of the Landauer-Buttiker formalism. It is found that both electric and spin Hall currents circulate when two spin-orbit couplings coexist, while the electric Hall conductance vanishes if either one is absent. The electric and spin Hall conductances are suppressed in strong disorder, but survive in weak disorder. Physically it can be understood that the spinomotive transverse "force" generated by spin-orbit coupling is responsible for the formation of the spin Hall current and the lack of transverse reflection symmetry is the origin of the electric Hall current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.