Abstract

The spin and orbital angular momentum (namely SAM and OAM) mode division provides a promising solution to surmount exhausted available degrees of freedom in conventional optical communications. Nevertheless, SAM and OAM are often subjected to the degeneracy of total angular momentum (AM) because they both have integer variables of quantum eigenstates, which inevitably brings about the shortcomings specific to limited signal channels and multiplexing cross talk. Herein, we present a nanoplasmonic metachain that can discriminatively couple any input SAM and OAM components to an extrinsic orbital AM, corresponding to the chirality and topological charge of incident light. Importantly, the unambiguous measurement has a prominent advantage of detecting the arbitrary AM component rather than the total AM. The miniature metadevice offers the possibility of harnessing AM division on chip or in fiber and holds great promise to delve the spin-orbit interactions for topological photonics and quantum cryptography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.