Abstract

We present accurate abinitio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb^{+}-Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb^{+}-Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher etal., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb^{+} immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T^{-0.3} temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb^{+}-Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call