Abstract
The spin–orbit induced electric field gradient in cubic ferromagnets has been observed experimentally in the past for many systems. Even its dependence on the orientation of the magnetisation with respect to the crystallographic axes could be convincingly demonstrated. A fully relativistic description is presented that is based on the Korringa–Kohn–Rostoker (KKR) method of band structure calculation. Application of this approach to substitutional 5d-transition metals in Fe led to a satisfying agreement with available experimental data. To allow for a more detailed discussion of the results an analytical model has been developed, that treats spin-orbit coupling as a perturbation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have