Abstract
We consider modified Weyl gravity where a Dirac spinor field is nonminimally coupled to gravity. It is assumed that such modified gravity is some approximation for the description of quantum gravitational effects related to the gravitating spinor field. It is shown that such a theory contains solutions for a class of metrics which are conformally equivalent to the Hopf metric on the Hopf fibration. For this case, we obtain a full discrete spectrum of the solutions and show that they can be related to the Hopf invariant on the Hopf fibration. The expression for the spin operator in the Hopf coordinates is obtained. It is demonstrated that this class of conformally equivalent metrics contains the following: (a) a metric describing a toroidal wormhole without exotic matter; (b) a cosmological solution with a bounce and inflation and (c) a transition with a change in metric signature. A physical discussion of the results is given.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have