Abstract
PurposeWhile traditional collimations are widely used in preclinical SPECT imaging, they usually suffer from possessing a low system sensitivity leading to noisy images. In this study, we are aiming at introducing a novel collimator, the slithole, offering a superior resolution-sensitivity tradeoff for small animal SPECT. MethodsThe collimator was designed for a molecular SPECT scanner, the HiReSPECT. The slithole is a knife-edge narrow long aperture extended across long-axis of the camera’s head. To meet the data completeness requirement, the collimator-detector assembly spins at each regular SPECT angle. The collimator was modeled within GATE Monte Carlo simulator and the data acquisition was performed for NEMA Image Quality (IQ) phantom. In addition, a dedicated 3D iterative reconstruction algorithm based upon plane-integral projections was also developed. ResultsThe mean sensitivity of the slithole is 285cps/MBq while the current parallel-hole collimator holds a sensitivity of 36cps/MBq at a 30mm distance. The slithole collimation gives rise to a tomographic resolution of 1.8mm compared to a spatial resolution of∼1.7mm for the parallel-hole one (even after resolution modeling). A 1.75 reduction factor in the noise level was observed when the current parallel-hole collimator is replaced by the slithole. Furthermore, quantitative analysis proves that 3 full-iterations of our dedicated image reconstruction lead to optimal image quality. For the largest rod in the NEMA IQ phantom, a recovery coefficient of∼0.83 was obtained. ConclusionThe slithole collimator outperforms the current parallel-hole collimation by exhibiting a better resolution-sensitivity compromise for preclinical SPECT studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.