Abstract

BackgroundIn integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2–2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system.MethodsNEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging.ResultsUsing a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering.ConclusionThis study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.

Highlights

  • In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the National Electrical Manufacturers Association (NEMA) standard NU 2–2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging

  • Optimized PET image reconstruction parameters are provided for the highest lesion signal-to-noise ratio (SNR) in NEMA image quality (IQ) phantom measurements

  • Regarding the four smallest spheres filled with tracer activity (“radioactive spheres”) the performance values using MR-based AC are lower than the expected values for the underlying PET component when comparing as a general orientation to results reported in the literature for the Biograph mMR system [2]

Read more

Summary

Introduction

In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2–2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. For PET scanners in particular, the National Electrical Manufacturers Association (NEMA) has defined a standard to assess the performance of the tomographic system [3]. Such image quality control measurements need to be conducted in PET/MR hybrid imaging for PET performance measurements when introducing a new system [1, 2] or, on a regular basis, when monitoring quality of a specific PET system over time. Dose optimization studies that have been reported for PET/MR hybrid imaging rely on NEMA IQ phantom measurements [9] All these studies have in common that they build on accurate methods for attenuation correction (AC) of the phantoms involved

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call