Abstract

Phenol and its derivatives, known as persistent organic pollutants, have long threatened human health and environmental safety. There is an urgent need to develop convenient, low-cost, and multiplex analytical methods. Since phenols are substrates of laccase, they can be detected via laccase-catalyzed colorimetric assays. Nevertheless, the laccase-based assays cannot distinguish different phenols. Moreover, natural laccases suffer from high cost and low stability issues. To meet these needs, here we developed a laccase-like nanozyme sensor array for phenol detection and differentiation, which takes advantage of both nanozymes and cross-reactive sensor arrays. First, we examined a series of spinel-type transition metal oxides and found that manganese on octahedral sites profoundly affects the laccase-like activity of the materials. Based on the developed manganese-based spinel oxides (i.e., Mn3O4, Zn0.4Li0.6Mn2O4, and LiMn2O4), a colorimetric sensor array was constructed. The sensor array could effectively identify and discriminate phenol and its derivatives and showed good performance in the identification and differentiation of phenols in tap water samples. This work provides an important guidance for the development of laccase-like nanozymes and a promising methodology for pollutant monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.