Abstract

LiGa5O8 in the spinel type structure is investigated as a potential ultra-wideband-gap semiconductor. The band structure is determined using the quasiparticle self-consistent GW method, and the optical properties are calculated at the Bethe Salpeter Equation level including electron-hole interaction effects. The optical gap including exciton effects and an estimate of the zero-point motion electron phonon coupling renormalizations is estimated to be about 5.2±0.1 eV with an exciton binding energy of about 0.4 eV. Si doping as potential n-type dopant is investigated and found to be a promising shallow donor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call