Abstract
We report a successful combination of magnetic force linear response theory with quasiparticle self-consistent GW method. The self-consistently determined wavefunctions and eigenvalues can just be used for the conventional magnetic force calculations. While its formulation is straightforward, this combination provides a way to investigate the effect of GW self-energy on the magnetic interactions which can hardly be quantified due to the limitation of current GW methodology in calculating the total energy difference in between different magnetic phases. In ferromagnetic 3d elements, GW self-energy slightly reduces the d bandwidth and enhances the interactions while the same long-range feature is maintained. In antiferromagnetic transition-metal monoxides, QSGW significantly reduces the interaction strengths by enlarging the gap. Orbital-dependent magnetic force calculations show that the coupling between eg and the nominally-empty 4s orbital is noticeably large in MnO which is reminiscent of the discussion for cuprates regarding the role of Cu-4s state. This combination of magnetic force theory with quasiparticle self-consistent GW can be a useful tool to study various magnetic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.