Abstract
The production of spindle disturbances in a human-hamster hybrid (A(L) ) cell line by an electromagnetic field (EMF) with field strength of 90 V/m at a frequency of 900 MHz was studied in greater detail. The experimental setup presented allows investigating whether either the electrical (E) and/or the magnetic (H) field component of EMF can be associated with the effectiveness of the spindle-disturbing potential. Therefore, both field components of a transversal electromagnetic field (TEM) wave have been separated during exposure of the biological system. This procedure should give more insight on understanding the underlying mechanisms of non-thermal effects of EMF. A statistical comparison of the proportions of the fractions of ana- and telophases with spindle disturbances, obtained for five different exposure conditions with respect to unexposed controls (sham condition), showed that only cells exposed to the H-field component of the EMF were not different from the control. Therefore, the results of the present study indicate that an exposure of cells to EMF at E-field strengths of 45 and 90 V/m, as well as to the separated E component of the EMF, induces significant spindle disturbances in ana- and telophases of the cell cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.