Abstract
The spindle checkpoint is a mitotic surveillance mechanism that delays anaphase until all sister chromatids are correctly attached to microtubules from opposite poles. Recent studies reveal that protein kinase Aurora B is a key regulator of spindle checkpoint activation whereas protein phosphatase PP1 antagonizes Aurora B and induces checkpoint silencing. Chromosome biorientation stretches the kinetochores and spatially separates centromeric Aurora B from its kinetochore substrates, comprising several PP1-interacting proteins (PIPs). The ensuing dephosphorylation of these PIPs creates docking sites for the bulk recruitment of PP1 to the kinetochores. We propose that this tension-induced targeting of PP1 triggers checkpoint silencing by the dephosphorylation of kinetochore and checkpoint components, including Aurora B substrates. In addition, PP1 also directly inactivates a kinetochore-associated pool of Aurora B and silences checkpoint signaling by opposing the centromeric targeting of Aurora B.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have