Abstract

Hot-electron transport in Co/Cu/Co trilayer films has been studied in the energy range from 1.0 to 2.0 eV using ballistic electron magnetic microscopy. Both the spin-dependent attenuation lengths of Co and the cumulative polarizing effects of spin-dependent tunneling and transmission across a Co/Cu interface have been determined. For very thin (a few A) Co layers, the latter effects result in a weakly majority-spin polarized electron beam above approximately 1.3 eV and a minority-spin polarized beam below approximately 1.2 eV. For thicker Co layers the transmitted beam is always majority-spin polarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.