Abstract
Bayesian inference is an effective approach for solving statistical learning problems, especially with uncertainty and incompleteness. However, Bayesian inference is a computing-intensive task whose efficiency is physically limited by the bottlenecks of conventional computing platforms. In this paper, a spintronics-based stochastic computing (SC) approach is proposed for efficient Bayesian inference. The inherent stochastic switching behaviors of spintronic devices are exploited to build a stochastic bitstream generator (SBG) for SC with hybrid CMOS/magnetic tunnel junction (MTJ) circuits design. Aiming to improve the inference efficiency, an SBG sharing strategy is leveraged to reduce the required SBG array scale by integrating a switch network between SBG array and SC logic. A device-to-architecture level framework is proposed to evaluate the performance of spintronics-based Bayesian inference system (SPINBIS). Experimental results on data fusion applications have shown that SPINBIS could improve the energy efficiency about 12× than MTJ-based approach with 45% design area overhead and about 26× than FPGA-based approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.