Abstract

The morphology of neurons in lamina I of the dorsal horn of the lumbar spinal cord which express neurokinin 1 receptors in the rat has been investigated. On the basis of soma and dendritic measurements, these neurons form two populations. One group consists of large neurons that stain intensely for the neurokinin 1 receptor with the immunochemical methods employed. They have a large soma, typically giving rise to between three and five thick principal dendrites. The dendritic tree, however, is relatively sparse, with the principal dendrites giving rise to small numbers of second- and third-order branches. All these dendrites are almost spine free. The dendritic tree spreads extensively in the rostrocaudal (approximately 550 μm) and mediolateral (approximately 30 μm) orientations, with few ventrally directed branches. These cells give rise to a single axon from their soma or a principal dendrite that generates a few local branches and also ramifies sparsely in deeper laminae (II–IV). The details of axonal morphology were established from intracellularly labelled material. Ultrastructural analysis of the synaptic input to these neurons reveals that they receive synapses with both clear round, flattened and dense-core vesicles; however, they do not form components of glomerular synapses. The second neuron type stains less intensely and typically has a small fusiform soma, giving rise to dendrites at its rostral and caudal poles. The dendritic tree is long in the rostrocaudal orientation (approximately 350 μm), but restricted mediolaterally (approximately 40 μm). The primary dendrites of these neurons bifurcate and soon give rise to third-order branches that are spiny. No pattern of organization could be detected for the distribution of either neuron type. These observations are discussed in the light of other recent studies indicating a central role for lamina I neurons expressing neurokinin 1 in the perception of severe pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.