Abstract

In response to chronic mild hypoxia (CMH, 8% O2), spinal cord blood vessels launch a robust angiogenic response that is associated with transient disruption of the blood-spinal cord barrier (BSCB) which, in turn, triggers a microglial vasculo-protective response. Because hypoxia occurs in many age-related conditions, the goal of this study was to define how aging influences these responses by comparing events in young (8-10 weeks) and aged (20 months) mice. This revealed that aged mice had much greater (3-4-fold) levels of hypoxic-induced BSCB disruption than young mice and that, while the early stage of the angiogenic response in aged mice was no different to young mice, the maturation of newly formed vessels was significantly delayed. Interestingly, microglia in the spinal cords of aged mice were much more activated than young mice, even under normoxic conditions, and this was further enhanced by CMH, though, surprisingly, this resulted in reduced microglial clustering around leaky blood vessels and diminished vasculo-protection. Vascular disruption was associated with loss of myelin in spinal cord white matter (WM) in both young and aged mice. Furthermore, it was notable that the spinal cord of aged mice contained a lower density of Olig2+ oligodendroglial cells even under normoxic conditions and that CMH significantly reduced the density of Olig2+ cells in spinal cord WM of the aged, but not the young, mice. These results demonstrate that spinal cord blood vessels of aged mice are much more vulnerable to the damaging effects of hypoxia than young mice, in part due to the reduced vasculo-protection conferred by chronically activated microglial cells. These observations may have implications for the pathogenesis and/or treatment of spinal cord diseases such as amyotrophic lateral sclerosis (ALS) and suggest that an improvement in microglial function could offer therapeutic potential for treating these age-related conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call