Abstract
Spin-transfer torque magnetic random access memory (STT-MRAM) is a novel, magnetic memory technology that leverages the base platform established by an existing 100+nm node memory product called MRAM to enable a scalable nonvolatile memory solution for advanced process nodes. STT-MRAM features fast read and write times, small cell sizes of 6F 2 and potentially even smaller, and compatibility with existing DRAM and SRAM architecture with relatively small associated cost added. STT-MRAM is essentially a magnetic multilayer resistive element cell that is fabricated as an additional metal layer on top of conventional CMOS access transistors. In this review we give an overview of the existing STT-MRAM technologies currently in research and development across the world, as well as some specific discussion of results obtained at Grandis and with our foundry partners. We will show that in-plane STT-MRAM technology, particularly the DMTJ design, is a mature technology that meets all conventional requirements for an STT-MRAM cell to be a nonvolatile solution matching DRAM and/or SRAM drive circuitry. Exciting recent developments in perpendicular STT-MRAM also indicate that this type of STT-MRAM technology may reach maturity faster than expected, allowing even smaller cell size and product introduction at smaller nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Journal on Emerging Technologies in Computing Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.