Abstract

Using the complex stereographic variable representation for the macrospin, from a study of the nonlinear dynamics underlying the generalized Landau–Lifshitz (LL) equation with Gilbert damping, we show that the spin-transfer torque is effectively equivalent to an applied magnetic field. We study the macrospin switching on a Stoner particle due to spin-transfer torque on application of a spin-polarized current. We find that the switching due to spin-transfer torque is a more effective alternative to switching by an applied external field in the presence of damping. We demonstrate numerically that a spin-polarized current in the form of a short pulse can be effectively employed to achieve the desired macrospin switching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.