Abstract

Based on the spin-polarized free-electron model, spin and charge transports are analyzed in the magnetic tunnel junctions with the synthetic ferrimagnetic layers in the ballistic regime, and the spin-transfer torque is derived. In the realistic junctions, the spin torque exerted on the magnetizations of two ferromagnetic layers in the synthetic ferrimagnetic layer shows a trend to rotate the same direction. It is suggested that, through the antiferromagnetic interlayer coupling in the synthetic ferrimagnetic layer, this trend induces the cooperative reversal of magnetizations in two ferromagnetic layers, and expected that this cooperative rotation reduces the critical current for the magnetization reversal in the synthetic ferrimagnetic layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.