Abstract

A magnetoelectronic device is proposed in which a spin-current pulse produces a rapid reversal of the magnetization of a thin film nanomagnet. A spin-transfer torque induces the reversal and the switching speed is determined by the precession frequency of the magnetization in a thin film element’s demagnetization field. Micromagnetic simulations show that this switching occurs above a threshold pulse current and can be faster than 50 ps. In contrast to present spin-transfer devices, the switching does not require an initial fluctuation or deviation of magnetic layers from collinear alignment and is far more energy efficient. This device operates at room temperature and can be realized with present-day magnetic nanostructure technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call