Abstract

We report an Fe Kβ x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca(1-x)RE(x)Fe(2)As(2) (RE = La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ∼ 0.9 μ(B) at T = 300 K to ∼ 0.45 μ(B) at T = 70 K. In the collapsed tetragonal phase of Nd- and Pr-doped samples (T<70 K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca(1-x)RE(x)Fe(2)As(2) (RE = Pr and Nd) exhibits a spin-state transition and provide direct evidence for a nonmagnetic Fe(2+) ion in the collapsed tetragonal phase; spin state as predicted by Yildirim. We argue that the gradual change of the spin state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hund's rule coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.