Abstract

It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. “tumbling”). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call