Abstract

We demonstrate that a spin-dependent Seebeck effect can be detected in quantum wells with zinc-blend structure with equal Rashba-Dresselhaus spin-orbit couplings. This theory is based on the establishment of an itinerant antiferromagnetic state, a low total-energy configuration realized in the presence of the Coulomb interaction enabled by the $\mathbf{k}=0$ degeneracy of the opposite-spin single-particle energy spectra. Transport in this state is modeled by using the solutions of a Boltzmann equation obtained within the relaxation time approximation. Numerical estimates performed for realistic GaAs samples indicate that at low temperatures, the amplitude of the spin Seebeck coefficient can be increased by scattering on magnetic impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.