Abstract

By combining parallel and transverse magnetoresistance measurements on thin films of Co and Ni, the contribution of spin scattering at the domain walls is separated from the anisotropic magnetoresistance (AMR). A model, based on the Larmor-precession-induced deviation of the conduction electron spin direction during domain-wall traversal is developed. By using a scattering probability which varies with the cosine of the angle between the carrier spin and the local exchange field (as used for giant magnetoresistance systems) it is possible to account for the amplitude of the measured magnetoresistive effect. \textcopyright{} 1996 The American Physical Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.