Abstract

Spin-dependent tunneling in a ferromagnetic conductor/ semiconductor is analyzed with zero external fields. The barrier transparency, dwell time, tunneling time of electrons through heterostructure and the degree of polarization efficiency are calculated in Fe/GaAs double barrier heterostructure. The polarization efficiency of Fe/GaAs and Fe/InAs double-barrier heterostructures are compared. The Fe/GaAs has a high degree spin-polarization than Fe/InAs structure. The barrier transparency peak is sharper at the high width of the barrier. The results show that the polarization efficiency is maximum when the barrier width is maximum. The tunneling lifetime of electrons is evaluated using Heisenberg’s uncertainty principle. The spin components are completely separated at high barrier width and hence can be used effectively as a spin filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.