Abstract

In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax the electron spin, intrinsically protected by mirror symmetry. We calculate the relaxation times in different scenarios, accounting for all the possible spin-phonon couplings allowed by the hexagonal symmetry of the lattice. Scattering by flexural phonons imposes the ultimate bound to the spin lifetimes, in the ballpark of hundreds of nano-seconds at room temperature. This estimate and the behavior as a function of the carrier concentration are substantially altered by the presence of tensions or the pinning with the substrate. Static ripples also influence the spin transport in the diffusive regime, dominated by motional narrowing. We find that the D'yakonov-Perel' mechanism saturates when the mean free path is comparable to the correlation length of the heights profile. In this regime, the spin-relaxation times are exclusively determined by the geometry of the corrugations. Simple models for typical corrugations lead to lifetimes of the order of tens of micro-seconds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call