Abstract

Low symmetry of two-dimensional (2D) semiconductor systems results in a dependence of the spin relaxation times on the spin orientation relative to crystallographic directions. It is demonstrated that a microscopic reason for this anisotropy is an interference of structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA). For the D'yakonov–Perel' spin relaxation mechanism the anisotropy is due to SIA and BIA interference in the spin splitting of energy spectrum. In the case of the Elliott–Yafet mechanism the spin relaxation anisotropy is caused by the interference of SIA and BIA in the spin-flip scattering probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.