Abstract

The spin-polarized tunneling current transport through a ferromagnetic GaMnN resonant tunneling diode is investigated theoretically. Two distinct spin splitting peaks can be observed in the current-voltage characteristic. Spin splitting peaks and the spin polarization decrease and then disappear with increasing temperature. When charge polarization effect is considered for the GaN heterostructure, the spin-down resonant current peak becomes enhanced significantly and spin polarization is also increased accordingly. A highly spin polarized current can be obtained at a certain polarization charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.