Abstract

Spin-polarized atomic deuterium (↓D) is investigated in the static fluctuation approximation with a Morse-type potential. The thermodynamic properties of the system are computed as functions of temperature. In addition, the ground-state energy per atom is calculated for the three species of ↓D : ↓D 1, ↓D 2, and ↓D 3. This is then compared to the corresponding ground-state energy per atom for the ideal gas, and to that obtained by the perturbation theory of the hard sphere model. It is deduced that ↓D is nearly ideal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.