Abstract

The thermodynamic properties of neon and argon gases are studied within the static fluctuation approximation (SFA). These properties include the total internal energy, pressure, entropy, compressibility and specific heat. The results are compared with those recently obtained within the Galitskii–Migdal–Feynman (GMF) formalism. The overall agreement is very good. An exception, however, is the specific-heat results for neon. While SFA gives results rather similar to those of the ideal gas, the corresponding GMF results are quite different. It is argued that the discrepancy seems to have arisen from quantum effects in conformity with very recent Monte Carlo computations. Whenever possible, our SFA results are compared to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.