Abstract

The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is addressed theoretically. Recent experimental results\cite{Le-Gall_PRL_2009,Goryca_PRL_2009,Le-Gall_PRB_2010}show that it is possible to induce Mn spin polarization by means of circularly polarized optical pumping. Pumping is made possible by the faster Mn spin relaxation in the presence of the exciton. Here we discuss different Mn spin relaxation mechanisms. First, Mn-phonon coupling, which is enhanced in the presence of the exciton. Second, phonon-induced hole spin relaxation combined with carrier-Mn spin flip coupling and photon emission results in Mn spin relaxation. We model the Mn spin dynamics under the influence of a pumping laser that injects excitons into the dot, taking into account exciton-Mn exchange and phonon induced spin relaxation of both Mn and holes. Our simulations account for the optically induced Mn spin pumping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call