Abstract

We present a theory of spin and orbital physics in the A-site spinel compound FeSc2S4, which experimentally exhibits a broad "spin-orbital liquid" regime. A spin-orbital Hamiltonian is derived from a combination of microscopic consideration and symmetry analysis. We demonstrate a keen competition between spin-orbit interactions, which favor formation of a local "spin-orbital singlet," and exchange, which favors magnetic and orbital ordering. Separating the spin-orbital singlet from the ordered state is a quantum critical point. We argue that FeSc2S4 is close to this quantum critical point on the spin-orbital singlet side. The full phase diagram includes a commensurate-incommensurate transition within the ordered phase. A variety of comparisons to and suggestions for experiments are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.