Abstract
Odd-parity magnetic and magnetic toroidal multipoles in the absence of both spatial-inversion and time-reversal symmetries are sources of multiferroic and nonreciprocal optical phenomena. We investigate electronic states caused by an emergent odd-parity magnetic quadrupole (MQ) as a representative example of magnetic odd-parity multipoles. It is shown that spontaneous ordering of the MQ leads to an antisymmetric spin-orbital polarization in momentum space, which corresponds to a spin-orbital-momentum locking at each wave vector. By a symmetry argument, we show that the orbital or sublattice degree of freedom is indispensable to give rise to the spin-orbital-momentum locking. We demonstrate how the electronic band structures are modulated by the MQ ordering in the three-orbital system, in which the MQ is activated by the spin-dependent hybridization between the orbitals with different spatial parities. The spin-orbital-momentum locking is related to the microscopic origin of cross-correlated phenomena, e.g., the magnetic-field-induced symmetric and antisymmetric spin polarization in the band structure, the current-induced distortion, and the magnetoelectric effect. We also discuss similar spin-orbital-momentum locking in an antiferromagnet where the MQ degree of freedom is activated through the antiferromagnetic spin structure in a sublattice system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.