Abstract

We develop a theory of spin fluctuations of exciton polaritons in a semiconductor microcavity under nonresonant unpolarized pumping. It is shown that the corresponding spin noise is sensitive to the scattering rates in the system, occupation of the ground state, statistics of polaritons, and interactions. The spin noise spectrum drastically narrows in the polariton lasing regime due to formation of a polariton condensate, while its shape can become non-Lorentzian owing to interaction-induced spin decoherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.