Abstract

We present the theory of spin relaxation of exciton polaritons treated as a gas of weakly interacting bosons. The model is based on the spin density matrix approach in the Born-Markov approximation. In its framework we have described the spin and energy relaxation of exciton-polaritons in semiconductor microcavities accounting for polariton-polariton and polariton-acoustic phonon scattering. We include various mechanisms of spin relaxation linked with the fine structure of the polaritons. The kinetic equation for time-dependent intensity and polarization of light emitted by the microcavities both at resonant and nonresonant pumping is obtained. The parametric amplification regime, in which the resonant polariton-polariton scattering plays the major role, is specifically analyzed. We show that the polarization plane of the emitted light can rotate as a function of the polarization degree of the pumping light which is a manifestation of the ``spin-optronic'' effect of self-induced Larmor precession of polariton pseudospins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.