Abstract
We have used the wave functions generated from a strong crystal field model of ferric ion in complexes of tetragonal symmetry with spin-orbit coupling, to calculate the behavior of several localized properties of the ferric ion in parameter regions of different ground and low-lying ferric ion states. In the previous paper of this series we have shown with this model that ferric ion can exist in a doublet, sextet, quartet and substantially spin-mixed ground state. We have delineated such regions and described the changing nature of the wave functions. In the present study, we calculate the effective magnetic moments and their temperature dependence, the first order magnetic field energies, and the electric field gradients of ferric ion in these various spin states. Particular emphasis is placed on the properties of ferric ion in substantially spin-mixed states which have hitherto not been reported. Wherever possible, our results are compared with existing experimental data. In particular, with this model, we have been able to quantitatively account for the continuously varying values of magnetic moment for a series of 12 ferric hemoglobin derivatives, in the region from range of 5.92 to 2.26 Bohr magnetons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have