Abstract

Water-soluble spin labels were used to study dimyristoyllecithin (DML) phospholipid multilayers. Previous studies report that there is a "bound" water region associated with dimyristoyllecithin containing about 10 molecules of water per phospholipid, a "trapped" water region located between the lamellae containing approximately 11 molecules per phospholipid, and a "ftion show that certain water-soluble spin-label mol-cules have their motional properties differentially modified by these three water environements. Furthermore, the labels also reveal the onset of lipid-phase transitions even though they have high water solubility. A phosphate-containing spin label demonstrated strong an isotropic motion in the lipid-water system above the phase transition but not below. The addition of cholesterol to the DML-water system removed the anisotropic motion of 2,2,6,6-tetramehtyl-4-phosphopiperidine-N-oxyl (Tempophosphate) and obscured the detection bound, trapped, and free water. In addition to the change-charge interactions between Tempophosphate and DML, two other spin labels were used both in the charged and uncharged states. 2,2,6,6-Tetramethyl-4-aminopiperidine-N-oxyl (Tempamine) in the charged state showed extremely strong anisotropic motion, presumably due to the interaction between the charged amine and the phosphate group of DML. When only partially charged, Tempamine showed much less anisotropic motion. PCA was analyzed at pH values where the carboxyl group was protonated and unprotonated. The resulting interaction was different at the two pH values. These water-soluble spin labels mimic ionic or nonionic solutes. Upon freezing, the spin labels are shown to be expelled from the ice regions into the remaining aqueous regions. The usefulness of this approach in studying solute behavior when freezing occurs and potential studies involving aqueous regions of cytoplasm are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.